
Michael Allen allenm3@lsu.edu https://michaelgallen.com/

STATEMENT OF RESEARCH INTERESTS

MICHAEL ALLEN

1. Overview

My research is in number theory, with particular interest in modular forms and their
applications. Roughly speaking, a modular form f(τ) is a complex-valued function defined
on the upper-half of the complex plane containing a vast amount of symmetry. Specifically,
we ask that

(1) f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

for all τ in the upper-half plane, some fixed positive integer (or half-integer) k, and all matri-
ces ( a bc d ) in either the group SL2(Z) of 2×2 matrices with integer coefficients and determinant
1 or some subgroup thereof. The transformation property (1) may appear restrictive enough
to prevent any such functions from existing at all, but in fact they are seemingly ubiquitous
throughout mathematics. Although originally developed for and primarily used in number
theory—most famously in Wiles’ proof of Fermat’s Last Theorem [33]—these functions have
been used to study topics as disparate as knots [19], black holes [11, 34], and homotopy
groups of spheres [20]. These widespread applications inform a large part of my interest in
modular forms—it can be easy as a theoretical mathematician to fall deeper into our own
specializations and lose sight of a broader view of mathematics, but modular forms give an
easy gateway into projects and ideas outside of my primary areas of focus. For example,
in §3, I discuss an ongoing project connecting modular forms and colored Jones polynomi-
als of knots, and §4 concerns work on quadratic class numbers by viewing them as Fourier
coefficients of modular forms.

A central point of focus in my research is in hypergeometric functions and their relationship
to modular forms. The hypergeometric function with parameters α = {r1, r2, . . . , rn} and
β = {q1, q2, . . . , qn−1} is defined as

(2) nFn−1

[
r1 r2 . . . rn

q1 . . . qn−1
; z

]
:=

∞∑
k=0

(r1)k(r2)k . . . (rn)k
(q1)k(q2)k . . . (qn−1)k

zk

k!
,

where (a)k denotes the rising factorial or Pochhammer symbol

(a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1).

These functions contain a surprising amount of arithmetic information. Most famously,
Ramanujan’s rapidly convergent hypergeometric formulas for 1/π, such as

4F3

[
7
6
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1
2

1
2

1
6

1 1
;

1

4

]
=

4

π
,

are the theoretical basis for the Chudnovsky algorithm which has been utilized for all recent
record-breaking computations of the digits of π. Hypergeometric functions also arise natu-
rally in geometry as period integrals of certain Calabi–Yau manifolds, which are expected to
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be modular in the sense of the modularity theorem for elliptic curves. This yields connections
between hypergeometric functions and modular forms.

Specifically, we often have a congruence between truncated hypergeometric functions and
Fourier coefficients of modular forms. For a fixed prime p, let F (α, β; z)p−1 denote the
truncation of the hypergeometric sum on the right-hand side of (2) at p− 1. Under certain
arithmetic conditions on α and β and for certain choices of z = λ, one often finds

F (α, β;λ) ≡ ap(f) (mod p),

where ap(f) is the pth coefficient in the Fourier expansion of some modular form f . In certain
circumstances, this congruence holds modulo higher powers of p. These supercongruences
have immediate number theoretic utility for computing Fourier expansions of modular forms
via the Weil bounds, and through connections to Calabi–Yau manifolds and Galois repre-
sentation yield geometric and algebraic interpretations as well. In section §2, I expand upon
and discuss my contributions to the theory of supercongruences.

I am intrigued by areas of number theory outside of modular forms as well. In §5, I
discuss a project in which my collaborators and I are bridging two questions from arithmetic
statistics and arithmetic geometry by investigating asymptotic bounds for the number of
number fields, ordered by absolute discriminant, which are generated by algebraic points on
a fixed plane curve.

2. Hypergeometric Supercongruences

2.1. Background and motivation. As discussed in §1, supercongruences refer to a stronger
than expected relationship between values of truncated hypergeometric functions and some
other arithmetic quantity, we will focus on the case where these quantities are Fourier coef-
ficients of modular forms. Generally, such a supercongruence will have the form
(3)

pmnFn−1

[
r1 r2 · · · rn

q1 · · · qn−1
; λ

]
p−1

:= pm
p−1∑
k=0

(r1)k · · · (rn)k
(q1)k · · · (qn−1)kk!

≡ pmχ(p)ap(f) (mod p1+s),

where χ is some Dirichlet character. The pm terms are necessary for clearing denominators in
cases where the truncated hypergeometric series are not p-adically integral, and the integer s
is referred to as the depth of the supercongruence. As a motivating example, Long, Tu, Yui,
and Zudilin [27] obtain 14 depth 2 supercongruences with m = 0, χ the trivial character,
and for all primes p > 5. These involve the fourteen hypergeometric functions

4F3

[
r1 1− r1 r1 1− r2

1 1 1
; 1

]
p−1
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}

and certain modular
forms of weight 4. These supercongruences were first observed by Rodriguez Villegas [32],
and arise from families of rigid Calabi–Yau threefolds.

2.2. Results. In my dissertation, I extend the work of Long, Tu, Yui, and Zudilin to the
following supercongruences, which were conjectured by Long:
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Theorem 1 (Allen, [3]). Assuming some expected conditions on the p-adic convergence of
ratios of the truncations of the given hypergeometric series,

p · 4F3

[
r1 1− r1 r2 1− r2

1 q 2− q ; 1

]
p−1
≡ χ(r1,r2,q)(p)ap(f{r1,r2,q}) (mod p3).

where (r1, r2, q) ∈
{
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, each fr1,r2,q is an
explicit weight 4 modular form and χ(r1,r2,q) is either trivial or a quadratic character.

These are the first supercongruences I know of to be worked on which involve parameters
other than 1 appearing in the denominator, which necessitates a much more delicate p-adic
analysis.

2.3. Future and ongoing work. The complete list of supercongruences which have been
proved remains relatively small, but there are many more that have been observed numeri-
cally. Currently, I am working with Ling Long and Fang-Ting Tu to investigate supercongru-
ences where the hypergeometric function is evaluated not at 1 but instead at CM (complex
multiplication) points on modular curves. As an example, it appears that

2F1
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mod p2s.

We are developing a new approach for these types of supercongruences, where we consider
the generating function of the truncated hypergeometric values

∞∑
n=0

F (α, β;λ)nx
n

and let x = x(q) be a modular function. This transforms this generating function into a
non-holomorphic modular form, where we allow for a single pole at the CM point λ. The
desired supercongruence can then be cast in terms of Atkin–Swinnerton-Dyer congruences
for the Fourier coefficients of the resulting form.

Additionally, Brian Grove, Long, Tu, and I have been investigating a number of hy-
pergeometric evaluations and supercongruences for 3F2 hypergeometric functions recently
conjectured by Dawsey and McCarthy [12], which were initially found in connection to Pa-
ley graphs. These cases introduce a new obstacle as the parameters are not defined over
Q, meaning that {ri} 6≡ {−ri} (mod Z). This condition restricts the primes for which the
supercongruences can hold to a particular arithmetic progression, but we believe that the
techniques of [27] and [3] can be adapted to this setting. Moreover, we are working to lift
these supercongruences which will enable us to use the Jacquet-Langlands correspondence
to give a geometric explanation of the supercongruences in Theorem 1.

3. Quantum modular forms and colored Jones polynomials

3.1. Background and motivation. One of the more recent entrants into the ever-growing
list of types of modular forms are quantum modular forms [35], which are functions on
rationals rather than on the upper-half plane. As Q is discrete, the modular transformation
(1) and analyticity conditions must be modified. Specifically, we require

f

(
ax+ b

cx+ d

)
− (cx+ d)kf(τ) = h(x)
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to extend to a function on R with nice analytic properties. This definition is kept intentionally
broad so as to encompass a large number of examples. If we instead use the disk model of
hyperbolic space, such a function will be defined as a function on roots of unity via the map
τ → q = e2πτ ; this is the formulation we use below.

Quantum modular forms arise naturally as colored Jones polynomials—a key invariant
arising in knot theory [22]. A result of Habiro [18] states that the N -colored Jones polynomial
of a knot K always has a cyclotomic expansion

JN(K; q) =
∞∑
n=0

Cn(K; q)(q1+N ; q)n(q1−N ; q)n,

where (a; q)n denotes the q-Pochhammer symbol (a; q)n :=
∏n−1

k=0(1 − aqk). Hikami and
Lovejoy [19] show that for the family of torus knots T(2,2t+1) and any N th root of unity ζN ,
JN(T(2,2t+1); ζN) = Ft(ζN), where

Ft(q) := qt
∑

kt≥···≥k1≥0

(q; q)kt

t−1∏
i=1

qki(ki+1)

[
ki+1

ki

]
q

is a quantum modular form, and [
n
k

]
q

=
(q; q)n

(q; q)k(q; q)n−k

is the q-binomial coefficient. The Quantum Modularity Conjecture of Zagier [16, 35] predicts
this phenomenon occurs for all knots, a result which would imply the famous Volume Conjec-
ture of Kashaev [23]. Additionally, Hikami and Lovejoy express the colored Jones polynomial
of the mirror JN(T ∗(2,2t+1); q) in connection to a mixed mock modular form Ut(x; q). The du-
ality between the colored Jones polynomial of a knot and its mirror then leads to a duality
between these different flavors of modularity.

3.2. Ongoing and future work. In an ongoing collaboration with Leah Sturman, we are
investigating the modularity properties of the colored Jones polynomials of double twist
knots. Let Km,p denote the double-twist knot obtained by linking ends of two twisted loops
of 2m and 2p half-turns. Lovejoy and Osburn [26] find q-series Fm,p(q) and Um,p(x; q) which
correspond to the colored Jones polynomial of Km,p and its mirror. The modularity proper-
ties of these series remains unknown, although much work has been done recently by authors
such as Borozonets [10] and Mortenson–Zwegers [31] to establish modularity of similar q-
series. We aim to use a particular 2-parameter family of Bailey pairs associated to the
knots Km,p to express the series Um,p(x; q) in terms of Hecke double sums and Appell–Lerch
sums, which have been frequently used to establish modularity properties of hypergeometric
q-series.

4. Holomorphic projection of sesquiharmonic forms

4.1. Background and motivation. In this section, we work with sesquiharmonic forms,
which are modular forms where our analyticity and growth conditions are that f be real
analytic and that the growth towards cusps is at most linear exponential. We also have the
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extra condition that f is annihilated by the differential operator ξk ◦ ∆k, where ξk is the
Brunier–Funke or shadow operator

ξk := iyk
(
∂

∂x
+ i

∂

∂y

)
,

and ∆k is the weight k hyperbolic Laplacian

∆k := −y2
(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
= ξ2−k ◦ ξk.

Every holomorphic cusp form is a sesquiharmonic form, and so we can associate a cusp form
πhol
k (f) to each sesquiharmonic form f by computing an orthogonal projection—with respect

to the Petersson inner product—onto Sk(Γ). This idea has been utilized by several authors
in studying harmonic Maass forms [1, 6, 7, 8, 21, 29, 30].

4.2. Results.

Theorem 2 (A., Beckwith, Sharma, [4]). Given a weight 1/2 sesquiharmonic form f and a
weight 3/2 theta function θχ corresponding to an odd Dirichlet character χ, we compute the
holomorphic projection of the weight 2 form f · θχ.

The exact formula is quite long, and so we omit it for brevity. As an application, we
investigate the holomorphic projection of the product of a θ function with a particular
sesquiharmonic form due to Duke–Imamoğlu–Tóth [13] and Ahlgren–Andersen–Samart [2],
whose coefficients are given in terms of Hurwitz class numbers and a real quadratic gener-
alization thereof which involves regulators and class numbers of real quadratic orders. In so
doing, we find symmetry and structure in these class numbers utilizing the inherit structure
on spaces of cusp forms.

4.3. Future directions. Most immediately, the Fourier expansion we currently have for
our holomorphic projection involves a limit of an infinite sum which does not converge
conditionally, but does appear to converge absolutely. If we could make this term explicit—
which we believe could be done using multiple Dirichlet series and shifted convolution sums—
then we would be able to deduce a lot more about the coefficients of a given sesquiharmonic
form from the holomorphic projection. Next, the product f(τ)θχ(τ) we utilize can also be
thought of as the zeroth Rankin–Cohen bracket; it may be more fruitful to use higher Rankin–
Cohen brackets instead. In particular, this would increase the weight of our sesquiharmonic
form past k = 2, and would make the convergence of certain integrals appearing in Gross and
Zagier’s [17] formula for the coefficients in the holomorphic projection easier to determine.
Finally, the theory of holomorphic projection could naturally be applied to other families of
sesquiharmonic forms or extended more generally to polyharmonic Maass forms.

5. Number fields generated by plane curves

5.1. Background and Motivation. The following project is in collaboration with Renee
Bell, Robert Lemke Oliver, Allechar Serrano López, and Tian An Wong, and originated at
the first Rethinking Number Theory workshop in October 2020.

Let K be a number field and C a smooth plane curve of genus g ≥ 2. A theorem of
Faltings [14, 15] states that the set of K-rational points of C is always finite. However, the
number of fields generated by C over K need not be finite. That is, there may be infinitely
many field extensions K(P ) over K that contain a point P on our curve C which is contained

5



Michael Allen allenm3@lsu.edu https://michaelgallen.com/

in no intermediate extension of K. In their program on Diophantine stability [28], Mazur
and Rubin suggest considering the family of all fields generated by a given curve as a tool
to study the curve C itself.

Motivated by this idea, multiple authors have considered the set of fields generated by a
fixed curve through the lens of arithmetic statistics. Formally, we let C (Q̄) denote the set
of all algebraic points on the curve C , and we define

FK(C ) :=
{
K(P ) : P ∈ C (Q̄)

}
.

We then define the quantity

NC
n (X) := # {L/K | L ∈ FK(C ) : L = K(P ), [L : K] = n, |DiscL/K| ≤ X} .

Asymptotic lower bounds for these functions have been found for elliptic curves by Lemke
Oliver and Thorne [25], for hyperelliptic curves by Keyes [24], and for superelliptic curves by
Beneish and Keyes [9]. The goal of this project is to find similar asymptotic lower bounds
that hold for all smooth plane curves C .

5.2. Results. With notation as above, we show the following:

Theorem 3 (A., Bell, Lemke Oliver, Serrano López, Wong, [5]). Let C : f(x, y) = 0 be a
nonsingular, absolutely irreducible plane curve over Q. Let m := gcd{degx f, degy f}. There
exists n0 ∈ Z such that if n ≥ n0 is a multiple of m, then there is a constant cn > 0 depending
only on n and C satisfying cn = 1

m2 + on→∞(1) such that

NC
n (X)�C ,n X

cn

as X →∞, where cn is computable and approaches 1

min{degx(f),degy(f)}2
as n→∞.

Our approach is to intersect our curve C with a parameterized curve g(t) = 〈x(t), y(t)〉
where x(t) and y(t) are rational functions with integer coefficients. These intersect exactly
when f(x(t), y(t)) = 0, which occurs exactly when t = α is an algebraic number, namely the
root of the numerator of the rational function f(x(t), y(t)). Assuming that this numerator is
irreducible, this gives us a number field Q(α) of degree n which contains a point (x(α), y(α))
lying on our curve. As we run through all such parametric curves 〈x(t), y(t)〉, this process
generates infinitely many algebraic points on C and hence infinitely many number fields
generated by C . Of course, multiple parametric curves can intersect C at a given point, and
so much of the work in determining our asymptotic lower bound comes from determining
redundancy in the number fields we count in this way.

5.3. Future directions. We are currently working to extend this result to count only num-
ber fields whose Galois closure has Galois group Sn. Intuitively, we should have a nearly
identical asymptotic lower bound, as we would expect any random irreducible polynomial
we write down to have Galois group Sn. However, proving this in the full generality of our
setting is quite difficult. Additionally, we are currently working to apply this result to a
result on number fields where the Jacobian J(C ) grows in rank, analogous to what Lemke
Oliver and Thorne show for elliptic curves [25].

We are only scraping the surface of questions that could be asked about fields generated
by curves, and so there are many directions I hope to continue this collaboration in, such
as considering Galois groups which are not Sn, searching for asymptotic upper bounds, or
considering more general geometric objects than only algebraic plane curves, such as algebraic
hypersurfaces.
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des Nombres de Bordeaux (2021), to appear.
[25] Robert Lemke Oliver and Frank Thorne. “Rank Growth of Elliptic Curves in Non-

Abelian Extensions”. In: International Mathematics Research Notices (Dec. 2019). doi:
10.1093/imrn/rnz307.

[26] Robert J. Lemke Oliver. “Eta-quotients and theta functions”. In: Advances in Math-
ematics 241 (2013), pp. 1–17. issn: 0001-8708. doi: https://doi.org/10.1016/j.
aim.2013.03.019. url: http://www.sciencedirect.com/science/article/pii/
S0001870813001102.

[27] Ling Long, Fang-Ting Tu, Noriko Yui, and Wadim Zudilin. “Supercongruences Oc-
cured to Rigid Hypergeometric Type Calabi–Yau Threefolds”. In: MATRIX Annals.
MATRIX Book Series 2 (2019). url: https://doi.org/10.1007/978-3-030-04161-
8_37.

[28] Barry Mazur, Karl Rubin, and Michael Larsen. “Diophantine Stability”. In: American
Journal of Mathematics 140.3 (2018), pp. 571–616. doi: 10.1353/ajm.2018.0014.

[29] Dermot McCarthy and Robert Osburn. “A p-adic analogue of a formula of Ramanujan”.
In: Arch. Math. (Basel) 91.6 (2008), pp. 492–504. issn: 0003-889X. doi: 10.1007/
s00013-008-2828-0. url: https://doi.org/10.1007/s00013-008-2828-0.

[30] Michael H. Mertens. “Mock modular forms and class number relations”. In: Res. Math.
Sci. 1 (2014), Art. 6, 16. issn: 2522-0144. doi: 10.1186/2197- 9847- 1- 6. url:
https://doi.org/10.1186/2197-9847-1-6.

8



Michael Allen allenm3@lsu.edu https://michaelgallen.com/

[31] Eric T. Mortenson and Sander Zwegers. The mixed mock modularity of certain duals
of generalized quantum modular forms of Hikami and Lovejoy. 2022. doi: 10.48550/
ARXIV.2207.02591. url: https://arxiv.org/abs/2207.02591.

[32] Fernando Rodriguez Villegas. “Hypergeometric families of Calabi-Yau threefolds”. In:
Calabi-You varieties and mirror symmetry (Toronto, ON, 2001) 38 (2003), pp. 223–
231.

[33] Andrew Wiles. “Modular Elliptic Curves and Fermat’s Last Theorem”. In: Annals of
Mathematics 141.3 (1995), pp. 443–551. issn: 0003486X. url: http://www.jstor.
org/stable/2118559.

[34] E. Witten. “Three-Dimensional Gravity Revisited”. In: arXiv: High Energy Physics -
Theory (2007).

[35] Don Zagier. “Quantum Modular Forms”. In: Quanta of Maths 11 (2010), pp. 659–675.

9


